Model-Based Inference for Completely Randomized Experiments

DongYoon Yang July 11, 2022

Seoul National University

Model-Based Inference for Completely Randomized Experiments

2 Simple Imputation Methods

3 Bayesian model-based imputation without covariates

2 Simple Imputation Methods

3 Bayesian model-based imputation without covariates

A completely randomized experiment is a classical randomized experiment with an assignment mechanism satisfying b

$$\mathbb{W}^{+} = \left\{ \mathbb{W} \in \mathbb{W} \mid \sum_{i=1}^{N} W_{i} = N_{t} \right\}$$
(1)

for some present $N_t \in \{1,2,\cdots,N-1\}$

•
$$\begin{pmatrix} N \\ N_t \end{pmatrix}$$
 assignment vectors in \mathbb{W}^+ are equally likely.
• $Pr(\boldsymbol{W}|\boldsymbol{X}, \boldsymbol{Y}(0), \boldsymbol{Y}(1)) = \begin{cases} \begin{pmatrix} N \\ N_t \end{pmatrix}^{-1}, & \text{if } \sum_{i=1}^n = N_t \\ 0, & \text{otherwise} \end{cases}$

Missing values for estimating treatment effect

$$\tau_{\rm fs} = \tau(\mathbf{Y}(0), \mathbf{Y}(1)) = \frac{1}{N} \cdot \sum_{i=1}^{N} (Y_i(1) - Y_i(0))$$
(2)

$$Y_{i}(0) = \begin{cases} Y_{i}^{\text{mis}} & \text{if } W_{i} = 1, \\ Y_{i}^{\text{obs}} & \text{if } W_{i} = 0, \end{cases} \text{ and } Y_{i}(1) = \begin{cases} Y_{i}^{\text{mis}} & \text{if } W_{i} = 0 \\ Y_{i}^{\text{obs}} & \text{if } W_{i} = 1 \end{cases}$$
(3)
$$\tau_{\text{fs}} = \tau(\mathbf{Y}(0), \mathbf{Y}(1))$$
$$= \frac{1}{N} \cdot \sum_{i}^{N} \left(\left(W_{i} \cdot Y_{i}^{\text{obs}} + (1 - W_{i}) \cdot Y_{i}^{\text{mis}} \right) - \left((1 - W_{i}) \cdot Y_{i}^{\text{obs}} + W_{i} \cdot Y_{i}^{\text{mis}} \right) \right)$$
$$= \frac{1}{N} \cdot \sum_{i=1}^{N} \left((2 \cdot W_{i} - 1) \cdot \left(Y_{i}^{\text{obs}} - Y_{i}^{\text{mis}} \right) \right)$$
$$= \tau \left(\mathbf{Y}^{\text{obs}}, \mathbf{Y}^{\text{mis}}, W \right)$$
(4)

$$\hat{\tau} = \hat{\tau} \left(\mathbf{Y}^{\text{obs}}, \, \hat{\mathbf{Y}}^{\text{mis}}, \, \mathbf{W} \right) = \frac{1}{N} \cdot \sum_{i=1}^{N} \left((2 \cdot W_i - 1) \cdot \left(\mathbf{Y}_i^{\text{obs}} - \, \hat{\mathbf{Y}}_i^{\text{mis}} \right) \right) \quad (5)$$

Model-Based Inference for Completely Randomized Experiments

2 Simple Imputation Methods

3 Bayesian model-based imputation without covariates

Unit	Potential Outcomes			
	$Y_i(0)$	$Y_i(1)$	Treatment Wi	Observed Outcome Y_i^{obs}
1	0	(12.8)	0	0
2	(4.13)	9.9	1	9.9
3	12.4	(12.8)	0	12.4
4	(4.13)	3.6	1	3.6
5	0	(12.8)	0	0
6	(4.13)	24.9	1	24.9
Average	4.13	12.8		
Diff (ATE):	8.67			

Multiple Imputation

Unit	Potential Outcomes			
	$Y_i(0)$	$Y_i(1)$	Treatment W _i	Observed Outcome Y_i^{obs}
Panel A: First	draw			
1	0	(3.6)	0	0
2	(12.4)	9.9	1	9.9
3	12.4	(9.9)	0	12.4
4	(12.4)	3.6	1	3.6
5	0	(9.9)	0	0
6	(0)	24.9	1	24.9
Average	6.2	10.3		
Diff (ATE):	4.1			
Panel B: Secor	nd draw			
1	0	(9.9)	0	0
2	(0)	9.9	1	9.9
3	12.4	(24.9)	0	12.4
4	(0)	3.6	1	3.6
5	0	(3.6)	0	0
6	(0)	24.9	1	24.9
Average	2.1	12.8		
Diff (ATE):	1	0.7		

Model-Based Inference for Completely Randomized Experiments

2 Simple Imputation Methods

3 Bayesian model-based imputation without covariates

1 Derivation of $p(\mathbf{Y}^{\text{mis}}|\mathbf{Y}^{\text{obs}}, W, \theta)$

- $p(\mathbf{Y}(0), \mathbf{Y}(1)|W, \theta) = p(\mathbf{Y}(0), \mathbf{Y}(1)|\theta)$
 - :: completely randomized experiment
- **2** Derivation of $p(\theta | \mathbf{Y}^{obs}, W)$
 - Assume $\theta \sim p(\theta)$
- **3** Derivation of $p(\mathbf{Y}^{\text{mis}}|\mathbf{Y}^{\text{obs}}, W)$
 - Use 1, 2 and integrating out θ .
- **4** Derivation of $p(\tau | \mathbf{Y}^{obs}, W)$

Simulation Example

$$\begin{pmatrix} Y_i(0) \\ Y_i(1) \end{pmatrix} \mid \mu_c, \mu_t \sim \mathcal{N}\left(\begin{pmatrix} \mu_c \\ \mu_t \end{pmatrix}, \begin{pmatrix} 100 & 0 \\ 0 & 64 \end{pmatrix} \right)$$
(6)

6 Repeat
$$1\sim$$
 3, get $\hat{ au}^{(k)}, k=1,\cdots,K$

7 Get sample mean and standard deviation.

Dependence between potential outcomes

$$\begin{pmatrix} Y_i(0) \\ Y_i(1) \end{pmatrix} \mid \boldsymbol{\theta} \sim \mathcal{N}\left(\begin{pmatrix} \mu_c \\ \mu_t \end{pmatrix}, \begin{pmatrix} \sigma_t^2 & \rho\sigma_t\sigma_c \\ \rho\sigma_t\sigma_c & \sigma_c^2 \end{pmatrix}\right) \quad (7)$$

•
$$\boldsymbol{\theta} = (\mu_c, \mu_t, \sigma_t, \sigma_c, \rho)$$

• Step 1.

$$\begin{split} Y_i^{\text{mis}} &| Y_i^{\text{obs}}, \mathsf{W}_i, \mathsf{X}_i, \boldsymbol{\theta} \\ &\sim \mathcal{N} \bigg(W_i \cdot (\mu_c + \frac{\sigma_c}{\sigma_t} (Y_i^{\text{obs}} - \mu_t)) + (1 - W_i) \cdot (\mu_t + \frac{\sigma_t}{\sigma_c} (Y_i^{\text{obs}} - \mu_c) \\ &(1 - \rho^2) (W_i \cdot \sigma_t^2 + (1 - W_i) \cdot \sigma_t^2) \bigg) \end{split}$$

2 Simple Imputation Methods

$$\begin{pmatrix} Y_i(0) \\ Y_i(1) \end{pmatrix} \begin{vmatrix} X_i, \theta \sim \mathcal{N}\left(\begin{pmatrix} X_i\beta_c \\ X_i\beta_t \end{pmatrix}, \begin{pmatrix} \sigma_c^2 & 0 \\ 0 & \sigma_t^2 \end{pmatrix}\right)$$
(8)

•
$$\boldsymbol{\theta} = (\beta_c, \beta_t, \sigma_c, \sigma_t)$$

•
$$Y_i^{\text{mis}} \mid Y_i^{\text{obs}}, W_i, X_i, \theta \sim$$

 $\mathcal{N}\left(W_i \cdot X_i \beta_c + (1 - W_i) \cdot X_i \beta_t, W_i \cdot \sigma_t^2 + (1 - W_i) \cdot \sigma_t^2\right)$

• Analytic solutions are difficult to obtain. In this case, we can get $\hat{\tau}$ by simulation study.